(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
activate(n__f(X)) →+ cons(activate(X), n__f(n__g(activate(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / n__f(X)].
The result substitution is [ ].
The rewrite sequence
activate(n__f(X)) →+ cons(activate(X), n__f(n__g(activate(X))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [X / n__f(X)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(X) → cons(X, n__f(n__g(X)))
g(0') → s(0')
g(s(X)) → s(s(g(X)))
sel(0', cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(X) → cons(X, n__f(n__g(X)))
g(0') → s(0')
g(s(X)) → s(s(g(X)))
sel(0', cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X
Types:
f :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
cons :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
n__f :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
n__g :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
g :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
0' :: n__g:n__f:cons:0':s
s :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
sel :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
activate :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
hole_n__g:n__f:cons:0':s1_0 :: n__g:n__f:cons:0':s
gen_n__g:n__f:cons:0':s2_0 :: Nat → n__g:n__f:cons:0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
g,
sel,
activateThey will be analysed ascendingly in the following order:
g < activate
activate < sel
(8) Obligation:
TRS:
Rules:
f(
X) →
cons(
X,
n__f(
n__g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
f(
X) →
n__f(
X)
g(
X) →
n__g(
X)
activate(
n__f(
X)) →
f(
activate(
X))
activate(
n__g(
X)) →
g(
activate(
X))
activate(
X) →
XTypes:
f :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
cons :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
n__f :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
n__g :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
g :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
0' :: n__g:n__f:cons:0':s
s :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
sel :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
activate :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
hole_n__g:n__f:cons:0':s1_0 :: n__g:n__f:cons:0':s
gen_n__g:n__f:cons:0':s2_0 :: Nat → n__g:n__f:cons:0':s
Generator Equations:
gen_n__g:n__f:cons:0':s2_0(0) ⇔ 0'
gen_n__g:n__f:cons:0':s2_0(+(x, 1)) ⇔ cons(0', gen_n__g:n__f:cons:0':s2_0(x))
The following defined symbols remain to be analysed:
g, sel, activate
They will be analysed ascendingly in the following order:
g < activate
activate < sel
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(10) Obligation:
TRS:
Rules:
f(
X) →
cons(
X,
n__f(
n__g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
f(
X) →
n__f(
X)
g(
X) →
n__g(
X)
activate(
n__f(
X)) →
f(
activate(
X))
activate(
n__g(
X)) →
g(
activate(
X))
activate(
X) →
XTypes:
f :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
cons :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
n__f :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
n__g :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
g :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
0' :: n__g:n__f:cons:0':s
s :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
sel :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
activate :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
hole_n__g:n__f:cons:0':s1_0 :: n__g:n__f:cons:0':s
gen_n__g:n__f:cons:0':s2_0 :: Nat → n__g:n__f:cons:0':s
Generator Equations:
gen_n__g:n__f:cons:0':s2_0(0) ⇔ 0'
gen_n__g:n__f:cons:0':s2_0(+(x, 1)) ⇔ cons(0', gen_n__g:n__f:cons:0':s2_0(x))
The following defined symbols remain to be analysed:
activate, sel
They will be analysed ascendingly in the following order:
activate < sel
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol activate.
(12) Obligation:
TRS:
Rules:
f(
X) →
cons(
X,
n__f(
n__g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
f(
X) →
n__f(
X)
g(
X) →
n__g(
X)
activate(
n__f(
X)) →
f(
activate(
X))
activate(
n__g(
X)) →
g(
activate(
X))
activate(
X) →
XTypes:
f :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
cons :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
n__f :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
n__g :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
g :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
0' :: n__g:n__f:cons:0':s
s :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
sel :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
activate :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
hole_n__g:n__f:cons:0':s1_0 :: n__g:n__f:cons:0':s
gen_n__g:n__f:cons:0':s2_0 :: Nat → n__g:n__f:cons:0':s
Generator Equations:
gen_n__g:n__f:cons:0':s2_0(0) ⇔ 0'
gen_n__g:n__f:cons:0':s2_0(+(x, 1)) ⇔ cons(0', gen_n__g:n__f:cons:0':s2_0(x))
The following defined symbols remain to be analysed:
sel
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol sel.
(14) Obligation:
TRS:
Rules:
f(
X) →
cons(
X,
n__f(
n__g(
X)))
g(
0') →
s(
0')
g(
s(
X)) →
s(
s(
g(
X)))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
activate(
Z))
f(
X) →
n__f(
X)
g(
X) →
n__g(
X)
activate(
n__f(
X)) →
f(
activate(
X))
activate(
n__g(
X)) →
g(
activate(
X))
activate(
X) →
XTypes:
f :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
cons :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
n__f :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
n__g :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
g :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
0' :: n__g:n__f:cons:0':s
s :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
sel :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
activate :: n__g:n__f:cons:0':s → n__g:n__f:cons:0':s
hole_n__g:n__f:cons:0':s1_0 :: n__g:n__f:cons:0':s
gen_n__g:n__f:cons:0':s2_0 :: Nat → n__g:n__f:cons:0':s
Generator Equations:
gen_n__g:n__f:cons:0':s2_0(0) ⇔ 0'
gen_n__g:n__f:cons:0':s2_0(+(x, 1)) ⇔ cons(0', gen_n__g:n__f:cons:0':s2_0(x))
No more defined symbols left to analyse.